Fluorescence correlation spectroscopy (FCS) is a single-molecule sensitive technique with widespread applications in biophysics. However, conventional microscope-based FCS setups have limitations in performing certain experiments such as those requiring agitations such as stirring or heating, and those involving measurements in solvents with the mismatch of refractive indices. We have recently developed an FCS setup that is suitable for performing measurements inside regular cuvettes. The cuvette-FCS is suitable for performing single-molecule measurements in experiments that are regularly performed in spectrofluorometers but are generally avoided in microscope-based FCS. Here we describe building and characterization of the performance of the cuvette-FCS setup in detail. Finally, we have used a natively folded protein and an intrinsically disordered protein to demonstrate and describe how cuvette-FCS can be applied conveniently to measure urea-dependent expansion of hydrodynamic size of proteins.
Keywords: Cuvette-FCS; Denaturation; Fluorescence correlation spectroscopy; Hydrodynamic size; Intrinsically disordered proteins; Optical aberrations; Point spread function; Signal to noise; Triplet state dynamics; Unfolding.
© 2018 Elsevier Inc. All rights reserved.