Pilot-scale biofiltration at a materials recovery facility: The impact on bioaerosol control

Waste Manag. 2018 Oct:80:154-167. doi: 10.1016/j.wasman.2018.09.010. Epub 2018 Sep 10.

Abstract

This study investigated the performance of four pilot-scale biofilters for the removal of bioaerosols from waste airstreams in a materials recovery facility (MRF) based in Leeds, UK. A six-stage Andersen sampler was used to measure the concentrations of four groups of bioaerosols (Aspergillus fumigatus, total fungi, total mesophilic bacteria and Gram negative bacteria) in the airstream before and after passing through the biofilters over a period of 11 months. The biofilters achieved average removal efficiency (RE) of 70% (35 to 97%) for A. fumigatus, 71% (35 to 94%) for total fungi, 68% (47 to 86%) for total mesophilic bacteria and 50% (-4 to 85%) for Gram negative bacteria, provided that the inlet concentration was high (103-105 cfu m-3), which is the case for most waste treatment facilities. The performance was highly variable at low inlet concentration with some cases showing an increase in outlet concentrations, suggesting that biofilters had the potential to be net emitters of bioaerosols. The gas phase residence time did not appear to have any statistically significant impact on bioaerosol removal efficiency. Particle size distribution varied between the inlet and outlet air, with the outlet having a greater proportion of smaller sized particles that represent a greater human health risk as they can penetrate deep into the respiratory system where gaseous exchange occurs. However, the outlet concentrations were low and would further be diluted by wind in full scale applications. In conclusion, this study shows that biofilters designed and operated for odour degradation can also achieve significant bioaerosol control in waste gas.

Keywords: Bioaerosols; Biofilter; Odour; Waste management; Woodchips.

MeSH terms

  • Filtration
  • Fungi
  • Humans
  • Odorants*
  • Wind*