Background: Varicella zoster virus (VZV) is a ubiquitous alphaherpesvirus that produces varicella and zoster. VZV can infect multiple cell types in the spinal cord and brain, including astrocytes, producing myelopathy and encephalopathy. While studies of VZV-astrocyte interactions are sparse, a recent report showed that quiescent primary human spinal cord astrocytes (qHA-sps) did not appear activated morphologically during VZV infection. Since astrocytes play a critical role in host defenses during viral infections of the central nervous system, we examined the cytokine responses of qHA-sps and quiescent primary human hippocampal astrocytes (qHA-hps) to VZV infection in vitro, as well as the ability of conditioned supernatant to recruit immune cells.
Methods: At 3 days post-infection, mock- and VZV-infected qHA-sps and qHA-hps were examined for morphological changes by immunofluorescence antibody assay using antibodies directed against glial fibrillary acidic protein and VZV. Conditioned supernatants were analyzed for proinflammatory cytokines [interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-gamma, and tumor necrosis factor-α] using the Meso Scale Discovery multiplex ELISA platform. Finally, the ability of conditioned supernatants to attract peripheral blood mononuclear cells (PBMCs) was determined using a chemotaxis assay. Quiescent primary human perineurial cells (qHPNCs) served as a control for VZV-induced cytokine production and PBMC migration. To confirm that the astrocytes have the ability to increase cytokine secretion, qHA-sps and qHA-hps were treated with IL-1β and examined for morphological changes and IL-6 secretion.
Results: VZV-infected qHA-sps displayed extensive cellular processes, whereas VZV-infected qHA-hps became swollen and clustered together. Astrocytes had the capacity to secrete IL-6 in response to IL-1β. Compared to mock-infected cells, VZV-infected qHA-sps showed significantly reduced secretion of IL-2, IL-4, IL-6, IL-12p70, and IL-13, while VZV-infected qHA-hps showed significantly reduced IL-8 secretion. In contrast, levels of all 10 cytokines examined were significantly increased in VZV-infected qHPNCs. Consistent with these results, conditioned supernatant from VZV-infected qHPNCs, but not that from VZV-infected qHA-sps and qHA-hps, recruited PBMCs.
Conclusions: VZV-infected qHA-sps and qHA-hps have distinct morphological alterations and patterns of proinflammatory cytokine suppression that could contribute to ineffective viral clearance in VZV myelopathy and encephalopathy, respectively.
Keywords: Astrocyte heterogeneity; Astrocytes; Cytokines; Encephalitis; Immune cell migration; Myelopathy; Varicella zoster virus.