Brain-computer interfaces (BCIs) make humancomputer interaction more natural, especially for people with neuro-muscular disabilities. Among various data acquisition modalities the electroencephalograms (EEG) occupy the most prominent place due to their non-invasiveness. In this work, a method based on sparse kernel machines is proposed for the classification of motor imagery (MI) EEG data. More specifically, a new sparse prior is proposed for the selection of the most important information and the estimation of model parameters is performed using the bayesian framework. The experimental results obtained on a benchmarking EEG dataset for MI, have shown that the proposed method compares favorably with state of the art approaches in BCI literature.