We developed a system to deposit H2O molecules onto ultrathin silicon nitride substrates in situ using time-resolved transmission electron diffraction apparatus and performed ultrafast time-resolved electron diffraction measurements in the noncrystalline (amorphous) H2O under near-ultraviolet photoexcitation. The observed dynamics directly represent O-H bond dissociation via multiphoton absorption and charge transfer, which trigger ionization and intermolecular disorder in the amorphous H2O. Our results illustrate the intriguing nature of light-matter and matter-matter interactions in H2O molecules.