A Trace C₂H₂ Sensor Based on an Absorption Spectrum Technique Using a Mid-Infrared Interband Cascade Laser

Micromachines (Basel). 2018 Oct 19;9(10):530. doi: 10.3390/mi9100530.

Abstract

In this study, tunable diode laser absorption spectroscopy (TDLAS) combined with wavelength modulation spectroscopy (WMS) was used to develop a trace C₂H₂ sensor based on the principle of gas absorption spectroscopy. The core of this sensor is an interband cascade laser that releases wavelength locks to the best absorption line of C₂H₂ at 3305 cm-1 (3026 nm) using a driving current and a working temperature control. As the detected result was influenced by 1/f noise caused by the laser or external environmental factors, the TDLAS-WMS technology was used to suppress the 1/f noise effectively, to obtain a better minimum detection limit (MDL) performance. The experimental results using C₂H₂ gas with five different concentrations show a good linear relationship between the peak value of the second harmonic signal and the gas concentration, with a linearity of 0.9987 and detection accuracy of 0.4%. In total, 1 ppmv of C₂H₂ gas sample was used for a 2 h observation experiment. The data show that the MDL is low as 1 ppbv at an integration time of 63 s. In addition, the sensor can be realized by changing the wavelength of the laser to detect a variety of gases, which shows the flexibility and practicability of the proposed sensor.

Keywords: interband cascade laser; mid-infrared spectrum; minimum detection limit; trace C2H2 detection; tunable semiconductor laser absorption spectroscopy; wavelength modulation technology.