Research on tactile sensing technology has been actively conducted in recent years to pave the way for the next generation of highly intelligent devices. Sophisticated tactile sensing technology has a broad range of potential applications in various fields including: (1) robotic systems with tactile sensors that are capable of situation recognition for high-risk tasks in hazardous environments; (2) tactile quality evaluation of consumer products in the cosmetic, automobile, and fabric industries that are used in everyday life; (3) robot-assisted surgery (RAS) to facilitate tactile interaction with the surgeon; and (4) artificial skin that features a sense of touch to help people with disabilities who suffer from loss of tactile sense. This review provides an overview of recent advances in tactile sensing technology, which is divided into three aspects: basic physiology associated with human tactile sensing, the requirements for the realization of viable tactile sensors, and new materials for tactile devices. In addition, the potential, hurdles, and major challenges of tactile sensing technology applications including artificial skin, medical devices, and analysis tools for human tactile perception are presented in detail. Finally, the review highlights possible routes, rapid trends, and new opportunities related to tactile devices in the foreseeable future.
Keywords: artificial skin; human tactile perception; robot-assisted surgery; soft robotics; tactile sensing.