Metabolomics is the qualitative and quantitative assessment of the metabolites (small molecules < 1.5 kDa) in body fluids. The metabolites are the downstream of the genetic transcription and translation processes and also downstream of the interactions with environmental exposures; thus, they are thought to closely relate to the phenotype, especially for multifactorial diseases. In the last decade, metabolomics has been increasingly used to identify biomarkers in disease, and it is currently recognized as a very powerful tool with great potential for clinical translation. The metabolome and the associated pathways also help improve our understanding of the pathophysiology and mechanisms of disease. While there has been increasing interest and research in metabolomics of the eye, the application of metabolomics to retinal diseases has been limited, even though these are leading causes of blindness. In this manuscript, we perform a comprehensive summary of the tools and knowledge required to perform a metabolomics study, and we highlight essential statistical methods for rigorous study design and data analysis. We review available protocols, summarize the best approaches, and address the current unmet need for information on collection and processing of tissues and biofluids that can be used for metabolomics of retinal diseases. Additionally, we critically analyze recent work in this field, both in animal models and in human clinical disease, including diabetic retinopathy and age-related macular degeneration. Finally, we identify opportunities for future research applying metabolomics to improve our current assessment and understanding of mechanisms of vitreoretinal diseases, and to hence improve patient assessment and care.
Keywords: Biomarkers; Mass spectrometry; Metabolomics; Nuclear magnetic resonance spectroscopy; Retina; Vitreous.
Copyright © 2018 Elsevier Ltd. All rights reserved.