Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with limited treatment options. Mutation of β-catenin is one of the most frequent genetic events along hepatocarcinogenesis. β-catenin mutations can be in the form of point mutation or large N-terminal deletion. Studies suggested that different β-catenin mutations might have distinct oncogenic potential.
Methods: We tested the oncogenic activity of β-cateninS45Y, one of the most frequent point mutations of β-catenin, and ∆N90-β-catenin, a form of β-catenin with a large N-terminal deletion, in promoting HCC development in mice. Thus, we co-expressed β-cateninS45Y or ∆N90-β-catenin together with c-Met into the mouse liver using hydrodynamic injection.
Results: We found that both β-catenin mutations were able to induce HCC formation in combination with c-Met at the same latency and efficiency. Tumors showed similar histological features and proliferation rates. However, immunohistochemistry showed predominantly nuclear staining of β-catenin in c-Met/∆N90-β-catenin HCC, but membrane immunoreactivity in c-Met/β-cateninS45Y HCC. qRT-PCR analysis demonstrated that both ∆N90-β-catenin and β-cateninS45Y induced the same effectors, although at somewhat different levels. In cultured cells, both ∆N90-β-catenin and β-cateninS45Y were capable of inducing TCF/LEF reporter expression, promoting proliferation, and inhibiting apoptosis.
Conclusions: Our study suggests that β-cateninS45Y and ∆N90-β-catenin, in combination with the c-Met proto-oncogene, have similar oncogenic potential. Furthermore, nuclear staining of β-catenin does not always characterize β-catenin activity.
Keywords: Hepatocellular carcinoma; c-Met; β-Catenin.