Blum's laboratory first showed the benefits of naloxone or narcotic antagonists in the treatment of alcohol dependence. This seminal work published in Nature in the early 70's, in conjunction with many other studies, later served as the basis for the development of the narcotic antagonist (NTX) now used to treat both alcohol and opioid dependence. In 2006 an extended-release injectable of Naltrexone (XR-NTX) was approved by the FDA. Naltrexone is a relatively weak antagonist of κ- and δ-receptors and is also a potent μ-receptor antagonist. Dosages of naltrexone that effectively reduce opioid and alcohol consumption also actively block μ-receptors, but chronically down-regulate mesolimbic dopamine release. While studies show benefit especially in the short term, there is ongoing evidence that the retention and compliance with NTX are not sufficient to characterize adherence as high. However, extended-release NTX opioid treatment is associated with superior outcomes including less likely relapse (defined as daily use), and much longer time to relapse despite higher rates of concurrent non-opioid substance use like cocaine. Regarding long-term extended-release injectable (XR-NTX) for opioid dependence; there was higher compliance with Opioid Use Disorder (OUD) than for Alcohol Use Disorder (AUD.). Consideration of modalities in combination with XR-NTX is imperative. Research by Blum., et al. showed that a combination of Naltrexone and a pro-dopamine regulator neuro-nutrient (KB220) significantly prevented opioid relapse. Thus, early identification of addiction vulnerability with the Genetic Addiction Risk Score (GARS™) a panel of polymorphic risk alleles from ten reward circuitry genes will provide valuable information especially as it relates to genetically guided therapy with the KB220 neuro nutrient termed 'Precision Addiction Management".
Keywords: Combination Therapy; Extended-Release Injectable Naltrexone (XR-NTX); Neuronutrient; Opioid Treatment; Reward Deficiency.