Glial populations within neuronal networks of the brain have recently gained much interest in the context of hyperexcitability and epilepsy. In this paper, we present an oscillator-based neuroglial model capable of generating Spontaneous Electrical Discharges (SEDs) in hyperexcitable conditions. The network is composed of 16 coupled Cognitive Rhythm Generators (CRGs), which are oscillator-based mathematical constructs previously described by our research team. CRGs are well-suited for modeling assemblies of excitable cells, and in this network, each represents one of the following populations: excitatory pyramidal cells, inhibitory interneurons, astrocytes, and microglia. We investigated various pathways leading to hyperexcitability, and our results suggest an important role for astrocytes and microglia in the generation of SEDs of various durations. Analysis of the resultant SEDs revealed two underlying duration distributions with differing properties. Particularly, short and long SEDs are associated with deterministic and random underlying processes, respectively. The mesoscale of this model makes it well-suited for (a) the elucidation of glia-related hypotheses in hyperexcitable conditions, (b) use as a testing platform for neuromodulation purposes, and (c) a hardware implementation for closed-loop neuromodulation.
Keywords: Coupled oscillators; astrocytes; epilepsy; gamma distributions; hyperexcitability; microglia.