High-efficiency target capture is an essential prerequisite for sensitive immunoassays. However, the current available immunoassay approaches are subject to deficient binding affinities between predator-prey molecules that greatly restrict the target capture efficiency and immunoassay sensitivity. Herein, we present a new strategy through the self-assembly of antigen proteins into nanowires to enhance the binding affinity between an antigen and antibody. Through the genetic fusion of antigen proteins (e.g., HIV p24) with the yeast amyloid protein Sup35 self-assembly domain, specific antigen nanowires (Ag nanowires) were constructed and demonstrated a remarkable enhancement in binding affinity compared with that of the monomeric antigen molecule. The Ag nanowires were further combined with magnetic beads to form a 3D magnetic probe based on a seed-induced self-assembly strategy. Taking advantage of both the strong binding affinity and the rapid magnetic separation and enrichment capacity, the specific 3D magnetic probe achieved a 100-fold improvement in detection sensitivity within a significantly shorter period of 20 min over that of the conventional enzyme-linked immunosorbent assay method.
Keywords: binding affinity; polyvalent interaction; protein nanowire; self-assembly; sensitive immunoassay.