A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry

Science. 2018 Nov 2;362(6414):560-564. doi: 10.1126/science.aau4414.

Abstract

The synthesis of ultrasmall supported bimetallic nanoparticles (between 1 and 3 nanometers in diameter) with well-defined stoichiometry and intimacy between constituent metals remains a substantial challenge. We synthesized 10 different supported bimetallic nanoparticles via surface inorganometallic chemistry by decomposing and reducing surface-adsorbed heterometallic double complex salts, which are readily obtained upon sequential adsorption of target cations and anions on a silica substrate. For example, adsorption of tetraamminepalladium(II) [Pd(NH3)4 2+] followed by adsorption of tetrachloroplatinate [PtCl4 2-] was used to form palladium-platinum (Pd-Pt) nanoparticles. These supported bimetallic nanoparticles show enhanced catalytic performance in acetylene selective hydrogenation, which clearly demonstrates a synergistic effect between constituent metals.

Publication types

  • Research Support, Non-U.S. Gov't