Spin trapping of precursors of thymine damage in X-irradiated DNA

Biochemistry. 1987 May 5;26(9):2458-65. doi: 10.1021/bi00383a009.

Abstract

A spin-trapping method combined with ESR spectroscopy was utilized to obtain evidence for the presence of precursor radicals leading to damage in X-irradiated DNA. Two technical improvements were introduced to the conventional spin-trapping method to make possible its application to large molecules such as DNA: prior to X irradiation, sonolysis of aqueous DNA solution by 19.5-kHz ultrasound was made to get a highly concentrated DNA solution and to lower the viscosity of the solution; after precursor radicals in X-irradiated DNA were trapped by a spin-trapping reagent, the DNA was digested to oligonucleotides by DNase I to get an ESR spectrum with a well-resolved hyperfine structure. Thus, it was recognized that the ESR spectrum obtained after X irradiation of the aqueous solution containing DNA and the nitroso spin-trapping reagent 2-methyl-2-nitrosopropane consisted of at least three sets of signals in the DNA. Identification of free radicals was made by comparing the spectrum with that of thymidine, which was precisely examined by a spin-trapping method combining two kinds of spin traps (nitroso and nitrone compounds) with liquid chromatography. As a result, all the signals were identified as the spin adducts of radicals produced at the thymine base moiety of DNA. The 5-hydroxy-5,6-dihydrothymin-6-yl radical was identified as a precursor of 5,6-dihydroxy-5,6-dihydrothymine (thymine glycol), the 6-hydroxy-5,6-dihydrothymin-5-yl radical as a precursor of 6-hydroxy-5,6-dihydrothymine, and the 5-methyleneuracil radical as a precursor of 5-(hydroxymethyl) uracil.

MeSH terms

  • DNA / radiation effects*
  • DNA Damage*
  • Electron Spin Resonance Spectroscopy
  • Hydroxides
  • Hydroxyl Radical
  • Thymine / radiation effects*
  • X-Rays

Substances

  • Hydroxides
  • Hydroxyl Radical
  • DNA
  • Thymine