Background: The Polycomb Repressive Complex 1 (PRC1) regulates epigenetic silencing and is manifestly linked to rare cancer types. The X-linked BCOR gene (BCL-6 Corepressor) is a member of the PRC1 complex and potentiates transcriptional repression through BCL6 binding of PRC1. Accumulating evidence suggests that internal tandem duplications (ITD) of BCOR are oncogenic drivers in a subset of pediatric sarcomas and rare adult tumors.
Objective: We reviewed the genomic profiles of a large series of advanced cancer patients to determine the frequency and genomic spectrum of ITD of BCOR across cancer.
Methods: Tissues from 140,411 unique advanced cancers were sequenced by hybrid-capture-NGS-based comprehensive genomic profiling of 186-315 genes plus introns from 14 to 28 genes commonly rearranged in cancer, as well as RNA for 265 genes for a portion of these cases.
Results: BCOR-ITDs were present in 0.024% of all cases (33/140,411). Of this dataset, sarcoma cancer types were most frequent, 63.6% (21/33), either of uterine origin 52.4% (11/21), or pediatric (nonuterine) 42.8% (9/21). The identified BCOR-ITDs occurred most frequently in exon 15, near C-terminus, 69.7% (23/33), with a mean insertion length of 31.7 codons (range 30-38). Of uterine cases, an expert gynecologic pathology central review identified all these cases as having a similar high-grade morphology consistent with endometrial stromal sarcomas (ESS), and 90% of cases having a round cell component. Of the uterine sarcoma cases harboring exon 15 BCOR-ITDs, none simultaneously carried gene fusions typically associated with ESS.
Conclusion: BCOR-ITDs define a rare subset of pediatric sarcomas and clinically aggressive endometrial stromal sarcoma cases, as defined by NGS for the first time. Our findings help delineate the pan-cancer landscape of this alteration and suggest the need for focused investigation to delineate the pro-oncogenic function of BCOR, along with any sensitivity to targeted therapies.
Keywords: BCOR gene; Duplication; Endometrial stromal sarcomas; Internal tandem duplications.
© 2018 S. Karger AG, Basel.