Non-β-Blocking Carvedilol Analog, VK-II-86, Prevents Ouabain-Induced Cardiotoxicity

Circ J. 2018 Dec 25;83(1):41-51. doi: 10.1253/circj.CJ-18-0247. Epub 2018 Oct 23.

Abstract

Background: It has been shown that carvedilol and its non β-blocking analog, VK-II-86, inhibit spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The aim of this study is to determine whether carvedilol and VK-II-86 suppress ouabain-induced arrhythmogenic Ca2+ waves and apoptosis in cardiac myocytes.

Methods and results: Rat cardiac myocytes were exposed to toxic doses of ouabain (50 µmol/L). Cell length (contraction) was monitored in electrically stimulated and non-stimulated conditions. Ouabain treatment increased contractility, frequency of spontaneous contractions and apoptosis compared to control cells. Carvedilol (1 µmol/L) or VK-II-86 (1 µmol/L) did not affect ouabain-induced inotropy, but significantly reduced the frequency of Ca2+ waves, spontaneous contractions and cell death evoked by ouabain treatment. This antiarrhythmic effect was not associated with a reduction in Ca2+ calmodulin-dependent protein kinase II (CaMKII) activity, phospholamban and ryanodine receptor phosphorylation or SR Ca2+ load. Similar results could be replicated in human cardiomyocytes derived from stem cells and in a mathematical model of human myocytes.

Conclusions: Carvedilol and VK-II-86 are effective to prevent ouabain-induced apoptosis and spontaneous contractions indicative of arrhythmogenic activity without affecting inotropy and demonstrated to be effective in human models, thus emerging as a therapeutic tool for the prevention of digitalis-induced arrhythmias and cardiac toxicity.

Keywords: Apoptosis; Arrhythmias; Carvedilol; Digitalis; VK-II-86.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Calcium Signaling / drug effects
  • Cardiotoxicity / metabolism
  • Cardiotoxicity / pathology
  • Cardiotoxicity / prevention & control*
  • Carvedilol* / analogs & derivatives
  • Carvedilol* / pharmacology
  • Disease Models, Animal
  • Humans
  • Male
  • Models, Cardiovascular*
  • Myocardial Contraction / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Ouabain / adverse effects*
  • Ouabain / pharmacology
  • Rats
  • Rats, Wistar

Substances

  • Carvedilol
  • Ouabain