The capacity of vasoactive intestinal peptide (VIP), peptide histidine-isoleucinamide (PHI), secretin, and a series of analogs to discriminate between VIP-preferring and secretin-preferring receptors that coexist in rat pancreatic plasma membranes was evaluated by their ability to inhibit [125I]iodo-VIP and [125I]iodo-secretin binding and to activate adenylate cyclase. VIP, the VIP analogs [D-His1]VIP, [D-Ser2]VIP, [D-Asp3]VIP and [D-Ala4]VIP, PHI, [D-Phe4]PHI, and secretin inhibited the binding of both ligands in a concentration range of 10(-11) M to 10(-5) M and with a selectivity factor varying from 18,000 to 0.1. The only exception was [D-Phe4]PHI that inhibited 125I-VIP binding only, with an IC50 of 7 nM, and with no inhibition of 125I-secretin binding at 10 microM. The peptides tested stimulated adenylate cyclase in the same membranes and the slope of the dose-effect curves indicated that all peptides, except [D-Phe4]PHI, interacted with at least two classes of receptors: VIP-preferring and secretin-preferring receptors. By contrast, the dose-effect curve of [D-Phe4]PHI activation of adenylate cyclase was monophasic and competitively modified by [D-Phe2]VIP (a VIP antagonist) but not by secretin(7-27) (a secretin antagonist), indicating an interaction with VIP-preferring receptors only. Thus, [D-Phe4]PHI appears to be a highly selective tool to characterize these receptors.