Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.
Keywords: Host seeking; Parasitic helminth; Parasitic nematode; Schistosomes; Sensory behavior; Strongyloides; Thermosensation.
Copyright © 2018 Elsevier B.V. All rights reserved.