The Trg protein mediates chemotactic response of Escherichia coli to the attractants ribose and galactose. Like other transducers, Trg is a transmembrane protein that undergoes post-translational covalent modification. The modifications are hydrolysis (deamidation) of certain glutamine side chains to create glutamate residues and methylation of specific glutamates to form carboxyl methyl esters. Analysis of radiolabeled, tryptic peptides by high performance liquid chromatography and gas-phase sequencing allowed direct identification of the modified residues of Trg. The protein has 5 methyl-accepting residues. Four, at positions 304, 310, 311, and 318, are contained in a 23-residue tryptic peptide ending in lysine. The fifth, at position 500, is within a 25-residue tryptic peptide ending in arginine. At two sites, 311 and 318, glutamines are deamidated to create methyl-accepting glutamates. There is not a required order of modification among the sites. However, there is a substantial preference for methylation on the arginine peptide and, among sites on the lysine peptide, for the middle pair. Comparison of sequences surrounding modified residues identified in this work for Trg and previously for Tsr and Tar suggests a consensus sequence for methyl-accepting sites of Ala/Ser-Xaa-Xaa-Glu-Glu*-Xaa-Ala/OH-Ala-OH/Ala, where OH signifies Ser or Thr and the asterick marks the site of modification.