In this study, we designed a polyvinyl alcohol (PVA)-alginate based hydrogel and evaluated its cytocompatibility and printability. The samples were fabricated by 3D printing using a freeze-thaw process. The scanning electron microscope, material testing machine, rheometer, and cell counting kit-8 assay were used to examine the morphology, mechanical properties, rheological properties, and cytocompatiblity of the scaffolds, respectively. The mechanical strength, cytocompatiblity, crosslinking time, and printability were remarkably improved with the use of PVA. To sum up, our data suggest that hybrid bio-ink is more appropriate for precise 3D bioprinting due to its rapid prototyping capability and better cytocompatibility. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2944-2954, 2018.
Keywords: 3D bioprinting; alginate; hydrogel; photo-crosslink; polyvinyl alcohol.
© 2018 Wiley Periodicals, Inc.