Complex formation and the kinetics of electron transfer between ferredoxin-NADP+ reductase (FNR) and two structurally homologous acidic 4Fe-4S high-potential ferredoxins (HiPIP's) from Ectothiorhodospira halophila (HP1 and HP2) and two structurally homologous cytochromes c2 from Paracoccus denitrificans and Rhodospirillum rubrum (PC2, and RC2, respectively) have been investigated by gel filtration and laser flash photolysis techniques. Gel filtration studies indicated that complex formation occurred between FNRox and HP1ox or HP2ox at low ionic strength (10 mM) and that the complexes were completely dissociated at high ionic strength (310 mM). Laser flash photolysis using lumiflavin as the reductant demonstrated that both free HP1ox and HP2ox reacted primarily with the anionic form of fully reduced lumiflavin (LFH-), whereas FNR was unreactive. Second-order rate constants of 1 X 10(6) and 0.8 X 10(6) M-1 s-1 were obtained for these reactions at 10 mM ionic strength. Increasing the ionic strength to 310 mM resulted in an approximately 1.5-fold increase in the rate constant. Inclusion of stoichiometric amounts of FNRox into the reaction mixture at low ionic strength led to a 2.5-fold increase in the rate constants. The reaction of 5-deazariboflavin semiquinone (5-dRf.) with the oxidized HiPIP's was also investigated by laser flash photolysis. Second-order rate constants of 3.0 X 10(8) M-1 s-1 (HP1) and 2.5 X 10(8) M-1 s-1 (HP2) were obtained for the free proteins at 10 mM ionic strength. Under the same conditions, 5-dRf. reacted with free FNRox, resulting in the formation of the neutral protein-bound semiquinone (FNR.), with a second-order rate constant of 6 X 10(8) M-1 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)