Complexation of Pu(vi) with N,N,N',N'-tetramethyl-3-oxa-glutar-amide (TMOGA) and related ligands: optical properties and coordination modes

Dalton Trans. 2018 Oct 30;47(42):15246-15253. doi: 10.1039/c8dt03303j.

Abstract

The complexation of hexavalent plutonyl Pu(vi) with N,N,N',N'-tetramethyl-3-oxa-glutar-amide (TMOGA) and its carboxylate analogs, N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) and oxydiacetic acid (ODA), has been studied in 1.0 M NaClO4 by absorption spectrophotometry and density functional theory (DFT). Both 1 : 1 and 1 : 2 complexes of Pu(vi) with TMOGA, DMOGA and ODA have been identified and their stability constants were obtained and compared with those of hexavalent U(vi) and pentavalent Np(v). The resultant stability constants indicate that the ability of the three ligands to complex with Pu(vi) decreases in the order of ODA > DMOGA > TMOGA. While for one given ligand, the stability constants of both the 1 : 1 and 1 : 2 complexes decrease generally in the order U(vi) > Pu(vi) > Np(v). The trends of the complexation strength have been elucidated by the calculated Mulliken atomic charges of the central metal cations. Furthermore, the coordination modes of the Pu(vi) complexes with TMOGA, DMOGA and ODA have been illustrated by analyses of the optical features of the complexes as well as by DFT calculations. The results demonstrate that the 1 : 2 Pu(vi)/TMOGA complex is centrosymmetric, while the 1 : 2 complexes of Pu(vi) with DMOGA and ODA are non-centrosymmetric. Moreover, different coordination modes have been observed in actinyl complexes with the same ligand, suggesting the structurally similar actinyl ions (U(vi), Pu(vi) and Np(v)) could exhibit quite different coordination behavior due to the variation of cation size and electronic structure.