VASP Regulates NK Cell Lytic Granule Convergence

J Immunol. 2018 Nov 15;201(10):2899-2909. doi: 10.4049/jimmunol.1800254. Epub 2018 Oct 3.

Abstract

NK cells eliminate viral-infected and malignant cells through a highly orchestrated series of cytoskeletal rearrangements, resulting in the release of cytolytic granule contents toward the target cell. Central to this process is the convergence of cytolytic granules to a common point, the microtubule-organizing center (MTOC), before delivery to the synapse. In this study, we show that vasodialator-stimulated phosphoprotein (VASP), an actin regulatory protein, localizes to the cytolytic synapse, but surprisingly, shows no impact on conjugate formation or synaptic actin accumulation despite being required for human NK cell-mediated killing. Interestingly, we also find that a pool of VASP copurifies with lytic granules and localizes with lytic granules at the MTOC. Significantly, depletion of VASP decreased lytic granule convergence without impacting MTOC polarization. Using the KHYG-1 cell line in which lytic granules are in a constitutively converged state, we find that either VASP depletion or F-actin destabilization promoted spreading of formerly converged granules. Our results demonstrate a novel requirement for VASP and actin polymerization in maintaining lytic granule convergence during NK cell-mediated killing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / immunology
  • Cell Adhesion Molecules / immunology*
  • Cytoplasmic Granules / immunology*
  • Cytotoxicity, Immunologic / immunology*
  • Humans
  • Killer Cells, Natural / immunology*
  • Lymphocyte Activation / immunology*
  • Microfilament Proteins / immunology*
  • Microtubule-Organizing Center / immunology
  • Phosphoproteins / immunology*

Substances

  • Cell Adhesion Molecules
  • Microfilament Proteins
  • Phosphoproteins
  • vasodilator-stimulated phosphoprotein