A Dynamically Stabilized Single-Nickel Electrocatalyst for Selective Reduction of Oxygen to Hydrogen Peroxide

Chemistry. 2018 Nov 16;24(64):17011-17018. doi: 10.1002/chem.201804312. Epub 2018 Nov 9.

Abstract

On-location electrochemical generation of H2 O2 is of great current interest. Herein, selective two-electron reduction of O2 to H2 O2 by a single [NiII (H2 O)6 ]2+ cation that is dynamically associated with a negatively charged metal-organic layer (MOL) by hydrogen bonding and coulombic interactions is reported. In contrast, NiII centers covalently immobilized on the MOL reduce O2 to H2 O in a four- electron process. Oxygen adsorption by [NiII (H2 O)6 ]2+ followed by two-electron reduction generates neutral [NiII (H2 O)4 (OH)(OOH)]0 , which momentarily disconnects from the negatively charged MOL to avoid the injection of additional electrons. Release of H2 O2 from [NiII (H2 O)4 (OH)(OOH)]0 regenerates [NiII (H2 O)6 ]2+ , which regains affinity to the MOL. Such dynamically associated NiII single-metal electrocatalysts ensure high selectivity and represent a new strategy for generating selective catalysts for electrochemical production of important chemicals.

Keywords: electrochemistry; metal-organic frameworks; nickel; oxygen; reduction.