The incidence of well‑differentiated thyroid cancer (WDTC) is rapidly increasing. Poor survival follows distant metastasis (DM) and recurrence. In the present study, we aimed to analyze the expression alterations in different stages of WDTC and the regulatory mechanism of DM and the recurrence of DM. A male patient diagnosed with follicular thyroid cancer and distant metastasis in the eleventh thoracic vertebrae received total thyroidectomy and the removal of a metastatic lesion. A local relapse was found in the vertebrae after four‑time iodine‑131 treatment. We performed mRNA and microRNA microarray on the paracancerous, cancerous, metastatic and metastatic recurrent tissue. In combination with the data of The Cancer Genome Atlas (TCGA), we used bioinformatics approaches to analyze the common alterations and microRNA‑mRNA interactions among the processes of tumorigenesis and metastasis. Metastatic lesions and recurrent lesions were used to investigate the molecular mechanism of tumor evolution and recurrence in this case. A total of four mRNAs and two microRNAs were newly found to be related to patient survival in WDTC. The microRNA‑mRNA interactions were predicted for the overlapped mRNAs and microRNAs. Lineage deregulation of genes, such as C‑X‑C motif chemokine receptor 4 (CXCR4) and thyroglobulin (TG) were found from the tumorigenic stage to the metastatic stage. The ribosome pathway was highly enriched in the bone metastasis compared with the cancerous tissue. The downstreaming effects of p53 were impaired in the recurrent lesion due to deregulation of several functional genes. The integrated analysis with TCGA data indicated several prognostic markers and regulatory networks for potential treatment. Our results also provided possible molecular mechanisms in which the ribosome and p53 pathways may respectively contribute to bone metastasis and local recurrence of metastasis.