Purpose: Torsional osteotomy of the distal femur allows anatomic treatment of patellofemoral instability and patellofemoral pain syndrome in cases of increased femoral antetorsion. The purpose of this study was to investigate the effects of distal femoral torsional osteotomy on pressure distribution of the medial and lateral patellar facet.
Methods: Nine fresh frozen human knee specimens were embedded in custom-made 3D-printed casts and tested with a robotic arm. Torsional osteotomy could be simulated ranging from increased femoral antetorsion of 25° with a corresponding lateralization of the patella to an overcorrected value of 5° of femoral antetorsion. The peak and mean lateral and medial compartment pressure was measured in 0°, 15°, 30°, 45°, 60° and 90° flexion beginning with neutral anatomic muscle rotation.
Results: The medial aspect of the patella showed a significant influence of femoral torsion with an increase of mean and peak pressure in all flexion angles with progressive derotation from 15° external rotation to 5° internal rotation (p = 0.004). The overall pressure difference was highest in near extension and stayed on a constant level with further flexion. On the lateral facet, the derotation resulted in decrease of pressure in near extension; however, it had no significant influence on the mean and peak pressure through the different torsion angles (n.s.). Unlike on the medial facet, a significant consistent increase of peak pressure from 0° to 90° flexion could be shown (p = 0.022) on the lateral patella aspect.
Conclusion: Distal femoral torsional osteotomy to correct pathological femoral antetorsion leads to a redistribution of retropatellar pressure. External derotation leads to an increased peak pressure on the medial patellar facet and can impair simultaneous cartilage repair. However, as the lateral patellofemoral load decreases, it has a potential in preventing patellofemoral osteoarthritis.
Keywords: Contact pressure; Distal femoral osteotomy; Retropatellar pressure; Rotational osteotomy.