Norfloxacin (NFX) is an antibacterial agent belonging to the fluoroquinolone family of drugs, known to bind bovine serum albumin (BSA). Surface-enhanced Raman scattering (SERS) and fluorescence spectroscopy in combination with molecular docking were explored to investigate the binding interaction between NFX with Bovine serum albumin (BSA) at a physiological condition. This study focused on identifying the binding site and relevant interaction mechanisms between NFX and BSA. Spectrophotometric titration with molecular docking results demonstrated that the binding site of NFX on BSA was located in sub-domain IIA. The principle binding site was identified within a hydrophobic cavity which is surrounded by the residues Leu 197, Arg 198, Ser 201, Ala 209, Trp 213, Ser 343, Leu 346, Lys 350, Ser 453, Leu 480, Val 481, and the binding force was mainly hydrophobic interaction and hydrogen bond interaction. In addition, the absorptive orientation of the NFX molecule on the colloidal surface underwent a set of changes during the process of NFX binding to BSA.
Keywords: Bovine serum albumin; Molecular docking; Norfloxacin; Surface-enhanced Raman scattering.
Copyright © 2018 Elsevier B.V. All rights reserved.