Intervertebral disc (IVD) degeneration (IDD), characterized by elevated levels of proinflammatory mediators, increased Aggrecan and collagen degradation, and increased degradation of extracellular matrix (ECM), has been widely regarded as a significant contributor to low back pain. Genetics are significant factors contribute to IDD. Based on previous data, circular RNA SEMA4B (circSEMA4B) is down-regulated in IDD specimens; herein, we demonstrated circSEMA4B overexpression could attenuate the effect of IL-1β on nucleus pulposus cell (NPC) proliferation, senescence, and ECM and Aggrecan degradation in IDD via Wnt signaling. Moreover, miR-431, a direct target of circSEMA4B, could bind to the 3'UTR of SFRP1 or GSK-3β, two inhibitory regulators of Wnt signaling, to inhibit their expression thus playing a role similar to the activator of Wnt signaling in NPCs. The effect of circSEMA4B knockdown on NPCs was partially reversed by miR-431 inhibition; circSEMA4B serves as a miR-431 sponge to compete with SFRP1 or GSK-3β for miR-431 binding, thus inhibiting IL-1β-induced degenerative process in NPCs through Wnt signaling. Rescuing circSEMA4B expression in NPCs in IDD might present a potential strategy for IDD improvement.
Keywords: Circular RNA SEMA4B (circSEMA4B); Intervertebral disc degeneration (IDD); Nucleus pulposus cells (NPCs); Wnt signaling; miR-431.
Copyright © 2018 Elsevier B.V. All rights reserved.