Six new tetracenomycin congeners, saccharothrixones E⁻I (1⁻5) and 13-de-O-methyltetracenomycin X (6), were isolated from the rare marine-derived actinomycete Saccharothrix sp. 10-10. Their structures were elucidated by spectroscopic analysis and time-dependent density functional theory (TDDFT)-electronic circular dichroism (ECD) calculations. Saccharothrixones G (3) and H (4) are the first examples of tetracenomycins featuring a novel ring-A-cleaved chromophore. Saccharothrixone I (5) was determined to be a seco-tetracenomycin derivative with ring-B cleavage. The new structural characteristics, highlighted by different oxidations at C-5 and cleavages in rings A and B, enrich the structural diversity of tetracenomycins and provide evidence for tetracenomycin biosynthesis. Analysis of the structure⁻activity relationship of these compounds confirmed the importance of the planarity of the naphthacenequinone chromophore and the methylation of the polar carboxy groups for tetracenomycin cytotoxicity.
Keywords: Saccharothrix sp.; marine actinomycete; saccharothrixone; seco-tetracenomycin; structure-activity relationship.