HIF-1α/Beclin1-Mediated Autophagy Is Involved in Neuroprotection Induced by Hypoxic Preconditioning

J Mol Neurosci. 2018 Oct;66(2):238-250. doi: 10.1007/s12031-018-1162-7. Epub 2018 Sep 10.

Abstract

Hypoxic preconditioning (HPC) exerts a protective effect against hypoxic/ischemic brain injury, and one mechanism explaining this effect may involve the upregulation of hypoxia-inducible factor-1 (HIF-1). Autophagy, an endogenous protective mechanism against hypoxic/ischemic injury, is correlated with the activation of the HIF-1α/Beclin1 signaling pathway. Based on previous studies, we hypothesize that the protective role of HPC may involve autophagy occurring via activation of the HIF-1α/Beclin1 signaling pathway. To test this hypothesis, we evaluated the effects of HPC on oxygen-glucose deprivation/reperfusion (OGD/R)-induced apoptosis and autophagy in SH-SY5Y cells. HPC significantly attenuated OGD/R-induced apoptosis, and this effect was suppressed by the autophagy inhibitor 3-methyladenine and mimicked by the autophagy agonist rapamycin. In control SH-SY5Y cells, HPC upregulated the expression of HIF-1α and downstream molecules such as BNIP3 and Beclin1. Additionally, HPC increased the LC3-II/LC3-I ratio and decreased p62 levels. The increase in the LC3-II/LC3-I ratio was inhibited by the HIF-1α inhibitor YC-1 or by Beclin1-short hairpin RNA (shRNA). In OGD/R-treated SH-SY5Y cells, HPC also upregulated the expression levels of HIF-1α, BNIP3, and Beclin1, as well as the LC3-II/LC3-I ratio. Furthermore, YC-1 or Beclin1-shRNA attenuated the HPC-mediated cell viability in OGD/R-treated cells. Taken together, our results demonstrate that HPC protects SH-SY5Y cells against OGD/R via HIF-1α/Beclin1-regulated autophagy.

Keywords: Autophagy; Beclin1; HIF-1α; Hypoxic preconditioning; Oxygen-glucose deprivation/reperfusion; SH-SY5Y cells.

MeSH terms

  • Apoptosis
  • Autophagy*
  • Beclin-1 / genetics
  • Beclin-1 / metabolism*
  • Cell Hypoxia
  • Cell Line, Tumor
  • Glucose / deficiency
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Neurons / metabolism*
  • Oxygen / metabolism*
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism

Substances

  • BECN1 protein, human
  • BNIP3 protein, human
  • Beclin-1
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Membrane Proteins
  • Proto-Oncogene Proteins
  • Glucose
  • Oxygen