Human immunodeficiency virus (HIV) genetic compartmentalization is defined as genetic differences in HIV in different tissue compartments or subcompartments that characterize viral quasispecies. This descriptive, longitudinal study assessed the dynamics of inflammation, humoral immune response, blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier, as well as neuronal injury biomarkers in serially obtained CSF and serum samples from an antiretroviral (ARV) therapy-naïve patient with HIV-1 subtype C with CSF HIV genetic compartmentalization that resolved spontaneously without ARV treatment. The first CSF sample showed an increase in white blood cell (WBC) count (382 cells/mm3) and a marked increase in the levels of inflammatory cytokines and chemokines, including tumor necrosis factor (TNF)α, interleukin (IL)-10, IP-10, and regulated on activation, normal T cell expressed and secreted (RANTES), which raise the suspicion of dual infection. Serum sample analysis showed all cytokine levels to be normal, with only IP-10 slightly increased. These results corroborate the hypothesis that the CNS immunologic response in a patient with HIV infection was independent of the systemic immunologic response. The patient also had persistently elevated levels of sCD14, neopterin, and β2M, which were strongly suggestive of persistent CNS immunologic stimulation. This report describes a patient with HIV subtype C who developed a transient episode of asymptomatic HIV meningitis with compartmentalization of HIV in the CSF that resolved independently of ARV therapy. Extensive CSF studies were performed as part of an ongoing longitudinal study, which revealed CNS immune abnormalities. This case presents evidence of HIV-1 subtype C neurotropism and compartmentalization.
Keywords: Biomarkers; CSF; Central nervous system; Compartmentalization; HIV; New generation sequence; Subtype C.