MYEOV functions as an amplified competing endogenous RNA in promoting metastasis by activating TGF-β pathway in NSCLC

Oncogene. 2019 Feb;38(6):896-912. doi: 10.1038/s41388-018-0484-9. Epub 2018 Sep 4.

Abstract

Non-small cell lung cancer (NSCLC) remains a major cause of death worldwide. As metastatic disease is primarily responsible for the poor clinical outcome of NSCLC, it is important to understand the process, and its underlying molecular mechanism as well, via which NSCLC cells disseminate. In this study, we identified a new competing endogenous RNA (ceRNA), namely, the MYEOV transcript, and found that it is upregulated in NSCLC and associated with a poor prognosis of the disease. We further uncovered that the MYEOV ceRNA plays a critical role in the invasion and metastasis of NSCLC cells. Intriguingly, the MYEOV ceRNA exerted its pro-metastatic function independent of its protein-coding capacity, but in a miR-30c-2-3p binding-dependent manner. Further experiments demonstrated that the MYEOV ceRNA sequestered miR-30c-2-3p from binding its targets TGFBR2 and USP15 mRNAs, which in turn leading to constitutive activation of TGF-β signaling and tumor progression in NSCLC. By identifying a new layer of regulatory modality for TGF-β signaling, our findings extend the current understanding on the molecular mechanism mediating NSCLC progression and highlight a potential role of MYEOV transcript to serve as the therapeutic target.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Animals
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Neoplasm Metastasis
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • RNA, Neoplasm / genetics
  • RNA, Neoplasm / metabolism*
  • Transforming Growth Factor beta / genetics
  • Transforming Growth Factor beta / metabolism*

Substances

  • MIRN30b microRNA, human
  • MYEOV protein, human
  • MicroRNAs
  • Proto-Oncogene Proteins
  • RNA, Neoplasm
  • Transforming Growth Factor beta