A new technology was developed to form extended release hard gelatin capsules, based on the lipid matrix formation of Gelucire 50/13 and cetostearyl alcohol. Matrices were formed in situ by filling pulverised lipids, ethylcellulose and active ingredients such as diclofenac sodium, acetaminophen and metronidazol into capsules and heating at 63°C for 11 min. Effects of heating were investigated also on the brittleness of capsule shells. Inhibition of the evaporation of water reduced capsule damage. Dissolution tests and texture analysis were performed to discover the release and mechanical profiles of the matrices. Tests were repeated after 1 month storage and results were compared. Gelucire 50/13 alone prolonged drug release but cetostearyl alcohol slowed drug liberation even further. Drug release from all compositions was found to follow first-order kinetic. Significant softening of the matrices was detected during storage in composition containing only Gelucire 50/13, ethylcellulose and diclofenac sodium. Thermal analysis and IR tests were also performed to discover physicochemical interactions between active pharmaceutical ingredients and excipients. Thermal analysis confirmed a notable interaction between diclofenac sodium and Gelucire 50/13 which could be the cause of the observed softening. In conclusion, modified release hard gelatin capsules were developed by a simple and fast monolithic lipid matrix formation method.
Keywords: Gelucire 50/13; dissolution kinetics; hard gel capsule; in situ matrix formation; lipid matrix.