We report the beneficial effects of calcium infusions in a child with hereditary resistance to 1,25(OH)2D and alopecia. This patient after transient responsiveness to vitamin D derivatives became unresponsive to all therapy despite serum 1,25(OH)2D concentrations maintained at levels approximately 100-fold normal. A 7-mo trial with calcium infusions led to correction of biochemical abnormalities and healing of rickets. Bone biopsies (n = 3) showed a normal mineralization and the disappearance of the osteomalacia. Cultures of bone-derived cells demonstrated a lack of activation of 25-hydroxyvitamin D 24-hydroxylase and osteocalcin synthesis by 1,25(OH)2D3 (10(-9) and 10(-6) M). These results demonstrate that even in the absence of a normal 1,25(OH)2D3 receptor-effector system in bone cells, normal mineralization can be achieved in humans if adequate serum calcium and phosphorus concentrations are maintained; and calcium infusions may be an efficient alternative for the management of patients with this condition who are unresponsive to large doses of vitamin D derivatives.