Stem cell therapy for faecal incontinence: Current state and future perspectives

World J Stem Cells. 2018 Jul 26;10(7):82-105. doi: 10.4252/wjsc.v10.i7.82.

Abstract

Faecal continence is a complex function involving different organs and systems. Faecal incontinence is a common disorder with different pathogeneses, disabling consequences and high repercussions for quality of life. Current management modalities are not ideal, and the development of new treatments is needed. Since 2008, stem cell therapies have been validated, 36 publications have appeared (29 in preclinical models and seven in clinical settings), and six registered clinical trials are currently ongoing. Some publications have combined stem cells with bioengineering technologies. The aim of this review is to identify and summarise the existing published knowledge of stem cell utilization as a treatment for faecal incontinence. A narrative or descriptive review is presented. Preclinical studies have demonstrated that cellular therapy, mainly in the form of local injections of muscle-derived (muscle derived stem cells or myoblasts derived from them) or mesenchymal (bone-marrow- or adipose-derived) stem cells, is safe. Cellular therapy has also been shown to stimulate the repair of both acute and subacute anal sphincter injuries, and some encouraging functional results have been obtained. Stem cells combined with normal cells on bioengineered scaffolds have achieved the successful creation and implantation of intrinsically-innervated anal sphincter constructs. The clinical evidence, based on adipose-derived stem cells and myoblasts, is extremely limited yet has yielded some promising results, and appears to be safe. Further investigation in both animal models and clinical settings is necessary to drawing conclusions. Nevertheless, if the preliminary results are confirmed, stem cell therapy for faecal incontinence may well become a clinical reality in the near future.

Keywords: Anal sphincter; Cell implantation; Cell therapy; Faecal incontinence; Stem cells; Tissue engineering.

Publication types

  • Review