Proteus mirabilis is one of the important pathogens of urinary tract and exhibits resistance to multiple drugs. Development of vaccine tends to be the most promising and cost-effective remedy against the said pathogen. Herein, we implement a combinatorial approach for screening proteins harboring potential broad-spectrum antigenic epitopes in the proteome of P. mirabilis. The targets are host non-homologous, essential and virulent, and have localization in the extracellular and outer membrane. Immuno-informatics revealed antigenic, surface exposed and broad-spectrum B-cell derived T-cell epitopes for three membrane usher family candidates: AtfC, PMI2533 and PMI1466, which could evoke a substantial immune response. Protein-protein interactions of targeted three proteins have shown their involvement in biologically significant pathways indispensable for the growth and survival of the pathogen. The antigenic epitopes are conserved among all completely annotated strains and docked deeply in the binding cavity of the most prevalent allele-DRB1*0101 in human population. Future work is necessary to characterize the shortlisted proteins and epitopes for immune protection in animal models.
Keywords: Epitope; Fimbriae; Proteus mirabilis; Urinary tract infection; Vaccine.
Copyright © 2018 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.