Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases

Neurol Sci. 2018 Nov;39(11):1827-1835. doi: 10.1007/s10072-018-3521-0. Epub 2018 Aug 3.

Abstract

Background and purpose: The central nervous system (CNS) faces unique difficulties in attaining permanent therapy for neurodegenerative disorder (ND). Genomic level forms of therapy have garnered interest in the recent decade, with the novel CRISPR/Cas9 gene editing tool continuing to be explored due to its efficiency, safety, and adaptability to varying conditions. With the aid of viral vectors as transport vectors, the gene editing tool has produced promising in vitro and in vivo findings in study models. Thus, this review focuses on the recent advancements and update of CRISPR/Cas9 to combat neurodegenerative diseases.

Methods: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.

Results: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.

Conclusion: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.

Keywords: CRISPR/Cas9; Demyelination; Gene editing; Molecular neuroscience; Neurodegeneration.

Publication types

  • Review

MeSH terms

  • Animals
  • CRISPR-Cas Systems / physiology*
  • Gene Editing / methods*
  • Genetic Therapy / methods*
  • Genetic Vectors
  • Humans
  • Neurodegenerative Diseases / genetics*
  • Neurodegenerative Diseases / therapy*