Application of micro-Raman spectroscopy for the monitoring of quality of high-k (h-k) dielectric protective layer deposition onto the surface of a nanowire (NW) chip has been demonstrated. A NW chip based on silicon-on-insulator (SOI) structures, protected with a layer of high-k dielectric ((h-k)-SOI-NW chip), has been employed for highly sensitive detection of microRNA (miRNA) associated with oncological diseases. The protective dielectric included a 2-nm-thick Al₂O₃ surface layer and a 8-nm-thick HfO₂ layer, deposited onto a silicon SOI-NW chip. Such a chip had increased time stability upon operation in solution, as compared with an unprotected SOI-NW chip with native oxide. The (h-k)-SOI-NW biosensor has been employed for the detection of DNA oligonucleotide (oDNA), which is a synthetic analogue of miRNA-21 associated with oncological diseases. To provide biospecificity of the detection, the surface of (h-k)-SOI-NW chip was modified with oligonucleotide probe molecules (oDVA probes) complementary to the sequence of the target biomolecule. Concentration sensitivity of the (h-k)-SOI-NW biosensor at the level of DL~10-16 M has been demonstrated.
Keywords: high-k dielectric; miRNA; micro-Raman spectroscopy; nanowire biosensor; silicon-on-insulator.