Ternary Organic Photovoltaics Prepared by Sequential Deposition of Single Donor and Binary Acceptors

ACS Appl Mater Interfaces. 2018 Aug 22;10(33):27757-27763. doi: 10.1021/acsami.8b07199. Epub 2018 Aug 13.

Abstract

Binary organic photovoltaics (OPVs) fabricated by single-step (SS) deposition of a binary blend of polymer (or small molecule) donor and fullerene acceptor (SS binary OPV) are widely utilized. To improve the OPV performance, SS ternary OPVs utilizing a ternary blend consisting of two (or one) electron donor(s) and one (or two) electron acceptor(s) have been studied. SS ternary OPVs require more sensitive and complex optimization processes to optimize bulk heterojunctions with bicontinuous nanoscale phase separation of the donor and acceptor. We demonstrated a novel ternary OPV fabricated by sequential (SQ) deposition of a single polymer donor and a binary mixture consisting of a phenyl-C71-butyric acid methyl ester (PCBM) and nonfullerene acceptor, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2,3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC). In the SQ ternary OPV, PCBM effectively created a bicontinuous pathway for charge transport with a polymer, and ITIC mainly enhanced light absorption and photovoltage. This complementary effect was not observed in an SS ternary OPV utilizing the same donor and acceptors. Due to these complementary effects, the SQ ternary OPV exhibited a power conversion efficiency of 6.22%, which was 52 and 37% higher than that of the SQ binary OPV and the SS ternary OPV, respectively. In addition, the thermal stability of the SQ ternary OPV was found to be superior to that of the SS ternary OPV.

Keywords: binary acceptor; nonfullerene acceptor; sequential solution deposition; ternary organic solar cell; thermal stability.