Interleukin-7 improves in vitro maturation of ovine cumulus-oocyte complexes in a dose dependent manner

Cytokine. 2019 Jan:113:296-304. doi: 10.1016/j.cyto.2018.07.025. Epub 2018 Jul 23.

Abstract

Interleukin-7 (IL-7) mediated signals are linked to development, proliferation, survival and differentiation of cells. Recent evidences indicate its role in oocyte maturation process as well. Nevertheless, the underlying mechanisms of IL-7 involvement in oocyte maturation are not well characterized. In addition, currently no information is available on the effect of exogenous IL-7 on oocyte maturation in ovine or any other species. In this study, the effect of IL-7 supplementation during in vitro maturation (IVM) on the maturation rate, production of reactive oxygen species (ROS) and gene expression of ovine cumulus-oocyte complexes (COC) was assessed. IL-7 (0.5, 1, 2, 5 and 10 ng/ml) was supplemented in IVM medium at the beginning (0 h) and maturation rate of COC was assessed at the completion of IVM (24 h). The maturation rate (%) was found significantly (P = 0.000) greater with the 1 ng/ml of IL-7 supplementation (69.5) than control (60.0). In contrast, the maturation rate was reduced significantly (P = 0.000) with the 2 (47.1), 5 (39.2) and 10 ng/ml (39.1) of IL-7 as compared to the control. The level of intracellular ROS in the matured COC was found considerably higher with the 5 ng/ml of IL-7 followed by 1 ng/ml of IL-7 and control. It was evident that in the presence of superoxide dismutase-inhibitor, 1 ng/ml of IL-7 did not stimulate oocyte maturation. In contrast, oocyte maturation was improved with 5 ng/ml of IL-7 supplementation in the presence of NADPH-oxidase-inhibitor. IL-7 supplementation influenced gene expression in COC in a dose and time dependant manner. The expression of genes related to ROS production and apoptosis were upregulated and the genes associated with antioxidant mechanisms were downregulated noticeably with the supplementation of 5 ng/ml of IL-7. In conclusion, IL-7 at low concentration was beneficial for oocyte maturation, which was likely mediated through the favourable level of intracellular ROS and antioxidant mechanisms. In contrast, the detrimental effects of greater IL-7 concentrations on oocyte maturation were possibly arbitrated through the ROS-mediated oxidative stress, compromised antioxidant mechanism and stimulated apoptotic signalling.

Keywords: COC; Gene expression; IL-7; IVM; Ovine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Dose-Response Relationship, Drug
  • Interleukin-7 / pharmacology*
  • Oocytes / cytology
  • Oocytes / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Sheep
  • Signal Transduction / drug effects*

Substances

  • Interleukin-7
  • Reactive Oxygen Species