SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses

J Proteomics. 2018 Sep 15:187:161-170. doi: 10.1016/j.jprot.2018.07.014. Epub 2018 Jul 23.

Abstract

Nitrogen is an essential macronutrient for plant growth and crop productivity. The aim of this work was to further investigate the molecular events during plant adaptation to nitrogen stress. Here, we present a SWATH-MS (Sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in Arabidopsis seedlings following nitrogen starvation. In total, 736 proteins of diverse functions were determined to show significant abundance changes between nitrogen-supplied and nitrogen-starved Arabidopsis seedlings. Functional categorization revealed the involvement of nitrogen stress-responsive proteins in biological processes including amino acid and protein metabolism, photosynthesis, lipid metabolism and glucosinolate metabolism. Subsequent phospholipid profiling of Arabidopsis seedlings showed changes in phospholipid composition that may enhance membrane fluidity as a response to nitrogen starvation. Moreover, an Arabidopsis grf6 T-DNA insertion mutant was found to have a nitrogen stress-sensitive phenotype. GRF6 is a 14-3-3 protein with elevated abundance upon nitrogen starvation and it may function as a positive regulator during nitrogen stress adaptation.

Keywords: 14-3-3; Arabidopsis; Nitrogen stress response; Phospholipid; SWATH-MS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / physiology
  • Arabidopsis / growth & development
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / analysis
  • Arabidopsis Proteins / metabolism
  • Mass Spectrometry / methods*
  • Nitrates / metabolism
  • Nitrogen / deficiency*
  • Nitrogen / metabolism
  • Phenotype
  • Photosynthesis / physiology
  • Proteome / analysis
  • Proteome / metabolism
  • Proteomics / methods*
  • Seedlings / metabolism
  • Stress, Physiological / physiology*

Substances

  • Arabidopsis Proteins
  • Nitrates
  • Proteome
  • Nitrogen