Attention is withdrawn from the area of the visual field where the own hand is currently moving

Neurosci Conscious. 2017 Feb 5;2017(1):niw025. doi: 10.1093/nc/niw025. eCollection 2017.

Abstract

Self-generated movement leads to the attenuation of predicted sensory consequences of the movement. This mechanism ensures that attention is generally not drawn to sensory signals caused by own movement. Such attenuation has been observed across the animal kingdom and in different sensory modalities. In this study we used novel virtual reality (VR) devices to test the hypothesis that the human brain attenuates visual sensation in the area of the visual field where the subject's hand is currently moving. We conducted three VR experiments where we monitored hand position during movement while the participants performed a visual search task. In the first two experiments we measured response time for salient moving targets and observed that reaction time (RT) is slower for targets that are behind the (invisible) hand. This result provides the first evidence that the visual motion signals generated by the subject's own hand movement are suppressed. In the third experiment we observed that RT is also slower for colored targets behind the hand. Our findings provide support for the active inference account of sensory attenuation, which posits that attenuation occurs because attention is withdrawn from the sensory consequences of own movement. Furthermore, we demonstrate how modern VR tools could open up new exciting avenues of research for studying the interplay of action and perception.

Keywords: active inference; perception; sensory attenuation; virtual reality; visual attention.