Alcohol use disorder (AUD) is a pervasive societal problem, marked by high levels of alcohol intake and recidivism. Despite these common disease traits, individuals diagnosed with AUD display a range of disordered drinking and alcohol-related behaviors. The diversity in disease presentation, as well as the established polygenic nature of the disorder and complex neurocircuitry, speaks to the variety of neurochemical changes resulting from alcohol intake that may differentially regulate alcohol-related behaviors. Investigations into the molecular adaptations responsible for maladaptive alcohol-related behavioral outcomes require an ever-evolving set of molecular tools to elucidate with increasing precision how alcohol alters behavior through neurochemical changes. This review highlights recent advances in molecular methodology, addressing how incorporation of these cutting-edge techniques not only may enhance current knowledge of the molecular bases of AUD, but also may facilitate identification of improved treatment targets that may be therapeutic in specific subpopulations of AUD individuals.
Keywords: CRISPR; FLEX; RNAi; TRAP.
Copyright © 2018 Elsevier Inc. All rights reserved.