Stimulation of Toll-like receptor 7 (TLR7) activates myeloid cells and boosts the immune response. Previously, we have shown that stimulation of the inhibitory CD200 receptor (CD200R) suppresses TLR7 signaling and that the absence of CD200R signaling leads to a decreased number of papillomas in mice. Here, we investigated the effects of agonistic anti-CD200R on the antitumor activity of a TLR7 agonist (R848) in a syngeneic mouse tumor model. Intratumoral administration of R848 inhibited the growth of the CT26 colon carcinoma and simultaneously decreased CD200R expression in tumor-infiltrating immune cells. The antitumor effects of R848 were potentiated by anti-CD200R. Successfully treated mice were resistant to rechallenge with the same tumor cells. However, the immediate antitumor effects were independent of lymphocytes, because treatment efficacy was similar in wild-type and Rag1tm1Mom mice. Administration of R848, particularly in combination with anti-CD200R, changed the phenotype of intratumoral myeloid cells. The infiltration with immature MHC-II+ macrophages decreased and in parallel monocytes and immature MHC-II- macrophages increased. Combined treatment decreased the expression of the macrophage markers F4/80, CD206, CD86, CD115, and the ability to produce IL1β, suggesting a shift in the composition of intratumor myeloid cells. Adoptively transferred CD11b+ myeloid cells, isolated from the tumors of mice treated with R848 and anti-CD200R, inhibited tumor outgrowth in recipient mice. We conclude that administration of agonistic anti-CD200R improves the antitumor effects of TLR7 signaling and changes the local tumor microenvironment, which becomes less supportive of tumor progression. Cancer Immunol Res; 6(8); 930-40. ©2018 AACR.
©2018 American Association for Cancer Research.