Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth

Phys Rev E. 2018 Jun;97(6-1):061202. doi: 10.1103/PhysRevE.97.061202.

Abstract

Cross-beam energy transfer (CBET) is a significant energy-loss mechanism in directly driven inertial-confinement-fusion (ICF) targets. One strategy for mitigating CBET is to increase the bandwidth of the laser light, thereby disrupting the resonant three-wave interactions that underlie this nonlinear scattering process. Here, we report on numerical simulations performed with the wave-based code lpse that show a significant reduction in CBET for bandwidths of 2-5 THz (corresponding to a normalized bandwidth of 0.2%-0.6% at a laser wavelength of 351nm) under realistic plasma conditions. Such bandwidths are beyond those available with current high-energy lasers used for ICF, but could be achieved using stimulated rotation Raman scattering in diatomic gases like nitrogen.