For conditions with inflammatory flare-ups, fast drug-release from a depot is crucial to reduce cell infiltration and prevent long-term tissue destruction. While this concept has been explored for chronic diseases, preventing acute inflammatory flares has not been explored. To address this issue, a preventative inflammation-sensitive system is developed and applied to acute gout, a condition where millions of inflammatory cells are recruited rapidly, causing excruciating and debilitating pain. Rapid drug release is first demonstrated from a pH-responsive acetalated dextran particle loaded with dexamethasone (AcDex-DXM), reducing proinflammatory cytokines in vitro as efficiently as free drug. Then, using the air pouch model of gout, mice are pretreated 24 h before inducing inflammation. AcDex-DXM reduces overall cell infiltration with decreased neutrophils, increases monocytes, and diminishes cytokines and chemokines. In a more extended prophylaxis model, murine joints are pretreated eight days before initiating inflammation. After quantifying cell infiltration, only AcDex-DXM reduces the overall joint inflammation, where neither free drug nor a conventional drug-depot achieves adequate anti-inflammatory effects. Here, the superior efficacy of disease-triggered drug-delivery to prevent acute inflammation is demonstrated over free drug and slow-release depots. This approach and results promise exciting treatment opportunities for multiple inflammatory conditions suffering from acute flares.
Keywords: disease-triggered; gout; inflammatory flare-ups; prophylaxis; stimuli-responsive particles.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.