Oxygen acts as the electron acceptor to oxidize ethanol by acetic acid bacteria during acetic acid fermentation. In this study, the energy release rate from ethanol and glucose under different aerate rate were compared, and the relationship between energy metabolism and acetic acid fermentation was analyzed. The results imply that proper oxygen supply can maintain the reasonable energy metabolism and cell tolerance to improve the acetic acid fermentation. Further, the transcriptions of genes that involve in the ethanol oxidation, TCA cycle, ATP synthesis and tolerance protein expression were analyzed to outline the effect of oxygen supply on cell metabolism of Acetobacter pasteurianus. Under the direction of energy metabolism framework a rational two-stage oxygen supply strategy was established to release the power consumption and substrates volatilization during acetic acid fermentation. As a result, the acetic acid production rate of 1.86 g/L/h was obtained, which were 20.78% higher than that of 0.1 vvm one-stage aerate rate. And the final acetic acid concentration and the stoichiometric yield were 88.5 g/L and 94.1%, respectively, which were 84.6 g/L and 89.5% for 0.15 vvm one-stage aerate rate.
Keywords: Acetic acid fermentation; Acetobacter pasteurianus; Energy metabolism; Oxygen supply.