Superconductivity in FeSe: The Role of Nematic Order

Phys Rev Lett. 2018 Jun 29;120(26):267001. doi: 10.1103/PhysRevLett.120.267001.

Abstract

Bulk FeSe is a special iron-based material in which superconductivity emerges inside a well-developed nematic phase. We present a microscopic model for this nematic superconducting state, which takes into account the mixing between s-wave and d-wave pairing channels and the changes in the orbital spectral weight promoted by the sign-changing nematic order parameter. We show that nematicity only weakly affects T_{c}, but gives rise to cos2θ variation of the pairing gap on the hole pocket, whose magnitude and size agrees with angle resolved photoemission spectroscopy and STM data. We further show that nematicity increases the weight of the d_{xz} orbital on the hole pocket, and increases (reduces) the weight of the d_{xy} orbital on the Y (X) electron pocket.