Scleral hypoxia is a target for myopia control

Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7091-E7100. doi: 10.1073/pnas.1721443115. Epub 2018 Jul 9.

Abstract

Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O2) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.

Keywords: HIF-1α; myopia; scRNA-seq; scleral ECM remodeling; scleral hypoxia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Eukaryotic Initiation Factor-2 / metabolism
  • Extracellular Matrix / metabolism*
  • Extracellular Matrix / pathology
  • Eye Proteins / metabolism
  • Guinea Pigs
  • Humans
  • Hypoxia*
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Male
  • Mice
  • Myopia / metabolism
  • Myopia / pathology
  • Myopia / therapy*
  • Sclera / blood supply
  • Sclera / metabolism*
  • Sclera / pathology
  • Signal Transduction*
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Eukaryotic Initiation Factor-2
  • Eye Proteins
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • mTOR protein, mouse
  • TOR Serine-Threonine Kinases