Due to doxorubicin (Dox) cardiotoxicity, the next generation of novel non-cardiotoxic anthracyclines, including AD 312 and AD 198, were synthesized and validated. In this study, we assessed the efficacy and mechanisms of anthracyclines-induced apoptosis and inhibition of cell viability in human bladder cancer cells expressing wild-type (wt) p53 (RT4 and SW780) and mutated (mt) p53 (UM-UC-3, 5637, T-24, J82, and TCCSUP) protein. Anthracyclines inhibited cell viability in tested TCC cells, but were less effective in mt-p53 TCC cells, especially in the drug-resistant J82 and TCCSUP cells. Anthracyclines upregulated the expression of wt p53 protein in RT4 and SW780 cells, but had no effect on expression of mt p53 protein in UM-UC-3, 5637, T-24, J82, and TCCSUP cells. The anthracyclines activated caspase 3/7 and cleavage of PARP in wt-p53 RT4 and SW780 cells, and mt-p53 5637, UM-UC-3, and T-24, but not in mt-p53 J82 and TCCSUP cells. The anthracyclines-induced cleavage of PARP was blocked by p53 siRNA in wt-p53 RT4 cells. Co-treatment of AD 198 with PRIMA-1 significantly inhibited cell viability of mt-p53 J82 cells, but had no effect in wt-p53 RT4 cells. AD 198 blocked c-myc expression in mt-p53 UM-UC-3, 5637, T-24, and J82 cells, however no expression of c-myc was detected in wt-p53 RT4 and SW780 cells. In conclusion, our results demonstrated that the anthracycline-induced resistance in bladder cancer cells positively correlated with TP53 mutations in the tetramerization domain in J82 and TCCSUP cells. Further, AD 312 and AD 198 are promising chemotherapeutic drugs for bladder cancer, especially in combination with PRIMA-1.
Keywords: AD 198; AD 312; PRIMA-1; bladder cancer; p53 siRNA.